Uniformly cordial graphs
نویسندگان
چکیده
LetG be a graph with vertex set V (G) and edge setE(G). A labeling f : V (G) → {0, 1} induces an edge labeling f ∗ : E(G) → {0, 1}, defined by f ∗(xy) = |f (x) − f (y)| for each edge xy ∈ E(G). For i ∈ {0, 1}, let ni(f ) = |{v ∈ V (G) : f (v) = i}| and mi(f )=|{e ∈ E(G) : f ∗(e)= i}|. Let c(f )=|m0(f )−m1(f )|.A labeling f of a graphG is called friendly if |n0(f )−n1(f )| 1. A cordial labeling ofG is a friendly labeling f for which c(f ) 1.A graphG is a uniformly cordial graph if every friendly labeling of G is cordial. It is shown that a connected graph G of order n 2 is uniformly cordial if and only if n = 3 and G = K3, or n is even and G=K1,n−1. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Totally magic cordial labeling of some graphs
A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...
متن کاملSome New Families of Total Vertex Product Cordial Labeling Of Graphs
I.Cahit introduced cordial graphs as a weaker version of graceful and harmonious graphs. The total product cordial labeling is a variant of cordial labeling. In this paper we introduce a vertex analogue product cordial labeling as a variant of total product cordial labeling and name it as total vertex product cordial labeling. Finally, we investigate total vertex product cordial labeling for ma...
متن کامل$k$-Total difference cordial graphs
Let $G$ be a graph. Let $f:V(G)to{0,1,2, ldots, k-1}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $left|f(u)-f(v)right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $left|t_{df}(i)-t_{df}(j)right|leq 1$, $i,j in {0,1,2, ldots, k-1}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with $x$.A graph with admits a...
متن کاملA note on 3-Prime cordial graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
متن کاملk-Remainder Cordial Graphs
In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006